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I. INTROOUCTION

Two of the principal theories of edge diffraction are the geometrical
theory of diffraction (GTD) enunciated by Keller [1] - [3] and the physical
theory of diffraction (PTD) originated by Ufimtsev [4]. The GTD extends the
Geometrical Optics (GO) by the inclusion of rays diffracted by surface
singularities. Keller's theory fails in the vicinities of GO boundaries known
as transition regions. To overcome this difficulty, the uniform theory of
diffraction (UTD) [5], [6] and the uniform asymptotic theory (UAT) [7] - [9]
have been devised. A common failing of all ray optic techniques is that they
predict infinite fields at caustics. The method of equivalent currents (MEC)
alleviates the problem at caustics encountered by GTD and a number of authors
have made contributions towards this end [10] - [14]. This method is based
upon prescribing fictitious currents on the true surfaces.

In contrast to GTD, PTD 1is a technique based upoé integrating the
currents induced on the scatterer, Ufimtsev postulates that the induced
current is a sum of uniform or physical optics (P0O) current induced by the GO
surface field and the non-uniform current induced by the diffracted field at
the surface. The scattered field is obtained as a surface integral of these
currents. Thus, PTD is an extension of PO. [t must be noted, however,
Ufimtsev does not give explicit expressions for the non-uniform currents, but
instead determines the field due to these currents from “indirect
considerations”.

Knott and Senior [15] present an elegant summation of the three
techniques, GTD, PTD and MEC. Lee [16] compared the UAT with PTD and points
out that the lack of explicit expressions for non-uniform currents or its
dominant contribution 1is a notable disadvantage of Ufimtsev's theory.

Schretter and Bolle [17] have attempted to find closed form approximations for




e
W
i -
i‘: £ .
1ad
:g5 surface currents on a wedge for both TE and TM polarizations. Their
" expressions suffer from significant discrepancies, however. A notaple
"

e addition to the literature on edge diffraction is a recent review paper by
éﬂ Deschamps [18].
- In this paper, we present closed form expressions for non-uniform
h
;g_ currents on a wedge illuminated by a TE-plane wave. These expressions are
o . . .
ey derived by requiring that they coincide with the current predicted by the
‘W

o asymptotic diffraction theory far from the edge and, further, that they agree
v?§ with the current predicted by the eigenfunction solution at the edge. The
Ll; angle of incidence is arbitrary and our expressions remain valid even in those
= cases where either one or both faces of the wedge is in the vicinity of a GO
é; boundary. Exact expressions for non-uniform currents are available for the
. .
{ﬁf two special cases of a half plane and an infinite plane. For these special
e
cases, our expressions reduce to the exact solution. Extensive computations
%ﬁ have been made and our expressions are compared with non-uniform currents
: 3 computed from an eigenfunction solution of the wedge. Good agreement is
N
obtained throughout.
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2. THEORY

In this section, we obtain expressions for surface currents induced on an
infinite wedge by a normally incident Transverse Electric (TE) plane wave.
Figure 1 shows the geometry of the problem. A cylindrical coordinate system
ijs used with the edge of wedge coinciding with the z-axis. Face A is defined
by the ¢ = 0 plane and Face B is defined by the ¢ = (27-a) plane, where a is
the inferior wedge angle. [t is convenient to define the numbers 'n'

and 'v' such that
(2n=a) = n= ='%, l<nc?2 and.% <vgl (1)

n=1(v=1) corresponds to an infinite plane and n = 2 (v =.%) corresponds
to a half plane.
The magnetic field of the incident TE-plane wave is given by,

n -JBo cos(e - #;) .
i* Ho e u, | (2)

Hy 1s the amplitude of the plane wave, 8 is the propagation
constant, 9 is the angle of incidence as shown in Figure 1 and Gz is the unit
vector in the z-direction. The unit tangential vectors EA and EB and the unit
normal vectors ;A and EB are shown in Figure 1. Also shown in Figure 1 are
the reflection boundary and the shadow boundary and the transition regions

associated with these boundaries.

From the symmetry of the problem under consideration we need to consider

the angles of incidence in the range 0 < 9 < n% only.
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Figure 1. Geometry of a Wedge.
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: 2.1. Formulation
el
. The current induced on either face of tne wedge is considered to consist
}\3 of two components. Following the terminology of Ufimtsev [4], these
<y
L7
’I&j components of the current are labeled the unifrom (physical optics) and non-
Al
uniform currents (NUC). Thus,
R
N
-
3 323 +3 (3
N = )
; u nu
;{i The total field of a wedge may be decomposed into the Geometrical Optics
fﬁ?f (GO) field and the diffracted field. The uniform and non-uniform currents may
T be considered to be induced by the GO field and the diffracted field. Hence,
g%t: the uniform current is,
%
-"‘:-l .
; . Ju = 2n x Hi in the illuminated region
- (4)
;-‘ ;
W : = 0 in the shadow region
W
-_‘!n. . . .
gziu The non-uniform current is not so easily obtained. However, far from the
‘ ] -,
::- edge, (Bp >> 1), the diffracted magnetic field and hence the current may be
L "
e ootained using the asymptotic theory of diffraction [5], [6]. Hence,
At
oo
SRy
d‘\. )
T 3, =0 xh, 8o >> 1 (5)
.;\\“-
L
S At the edge (p = 0), the eigenfunction solution may be used to obtain the
f;ﬂ total magnetic field. From James [19], the total field is,
*" . . -
.j,;.; ﬁTotal(p = 0) = 2vHu, (6)
) E,,\-
Wad
o ‘~I
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The non-uniform current is simply the difference between the total and uniform

currents and since the latter is known,
Jpu(p = 0) = 2uH (n xu,) - 3 (o = 0) (7)

Thus, from Equations (5) and (7), the non-uniform current is obtained for
points well removed from the edge and at the edge. We now postulate that the
NUC may be expresed in the following fashion:

Y

Jpu = N(Bos0;.n) €738 ¢ (8)
where 'h' is a function yet to be determined and t is an appropriate unit
tangent vector. We require that for 8p >> 1, it must reduce to Equation (5)
and further, for 8p = 0, it must reduce to Equation (7). Thus, the problem
consists in finding the function h(Bp;¢i.n) in such a way that for 8p > 1,
Equation (8) gives the same current as that predicted by the asymptotic theory
of diffraction and for gp = 0, it yields the same current as that dictated by
the eingenfunction solution.

Out of a wide class of possible functions, the choice for h(Bp) may be
narrowed down to one class of functions by an examination of the physics of
the problem. As shown in Figure 1 and as pointed out by James [19], the edge
and its vicinity is always in the transition region associated with GO
boundaries. Thus, the function h{B8p) acts as a connecting function between
points that are in and out of a transition region. In such a situation, a
Fresnel function or 1its variations represented the field variation as

demonstrated by both UTD [5] and UAT [7]. The Fresnel function appears in
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Sommerfeld's solution for a half plane [20] and also Pauli's solution for the
wedge [21]. The present case is no exception.
The particular function we use is the modified Fresnel function (MFF)

denoted by K_(x). As in [19] it is defined by,

K (x) =/;e3" [ et at (9)

- X

The large and small argument approximations for MFF are:

K_(x) ~ —=—— X > = (10)
) o nj e x
K (x) ~7- /:; * X x + 0 (11)
and ’
k(o) = 3 (12)

Note that the phase changae in MFF as x changes from zeroc to infinity
is -~} radians. As will be shown later, the phase change of NUC other than
that due to exp(-jse) is also the same.

Of special interest, for the purposes of this paper, is the MFF in the
form A K_(Ax) where A is a real, positive constant. The small and large

argument approximations for this function are,

AK (Ax) =5  Ax =0 (13)
1
AK (Ax) ~—=— Ax > 1 (14)
- 2/;3.' X
7

.........
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Note that the asymptotic approximation is the same for A K_(Ax) and K_{x).

will now derive the closed form expressions for non-uniform currents.
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2.2 Only Face-A is Illuminated

When the angle of incidence is in the range 0 < 95 < (n-1) = only Face A
is illuminated. Hence, the total current on Face A consists of both the
uniform and non-uniform currents. Face B, being in the shadow region, has no
uniform current and the total current consists of the non-uniform current

only.

Current on Face B: The diffracted magnetic field at the edge, from the

eigenfunction solution is given by

B

Hed

= 2v Ho Pg = 0 (15)

Pg is the distance from the edge along Face B. The diffracted magnetic field,

far from the edge, using Keller's Theory of diffraction as in [5) is given by

B sin vn 1
Heod ~ 2 My s v CoSve, . Bpg > 1 (16)
i ZwJBDB
B B
Hz,d 2 4y Ho 7 BpB a (17)
1 1 'jBDB
~ Gy H —— e Bog > 1 (18)
(o] 2];3 XB B
where
B =1
1
Xg = 7 Beg Ty (19)

Fg = sinvn/(cosvr + c05v¢1)
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Comparing Equations (17) and (18) with Equations (13) and (14) and noting tnat

Fg and hence xg remain positive for 0 < 9; < (n=1)x, H 8

z.d may be expressed in

terms of MFF as,

B 'j BQB

Hyoq = v Hy B K_(Bxg) e 0<pg<e (20)

The non-uniform current is given by,

jBo

B ~1%eg 2
Jg = - 4 H BK_(Bxg) tgs 0 < pg e (21)

0 < 9; < (n=1)r

By using Equations (10) and (12), we can easily verify that Equations (20) and
(21) agree with the asymptotic theory of diffraction for Bog >> 1 and with the
eigenfunction solution at the edge. We expect that they constitute a close
approximation to the true valdes for intermediate values of soy and will so

demonstrate by numerical computation in Section 3.

Current on Face A: The diffracted magnetic field at the edge and far from tne

edge is given by,

Hz,d = - 2 Ho(l -v), BDA = ( ‘ (22)
1 'jBDA
~ 2 Ho v FA e s Bog 1 (23)
v EWJSQA
where
F s sinvw (24)

A~ cosvmt - cosve,
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e
‘_jﬁ: Noting that FA remains negative for Q < ¢1.< n, Equations (22) and (23) may pe
K. .
L cast in the form,
s
“:‘x‘;’ R
\ Hz,d = -2 Ho (A/2) Bep = 0 (25)
A 1 ‘ijA
~ a2 H — = © Bp, >> 1 (26)
where,
A=2(1-v)

XA =y BOA/Z W

As before, comparing Equations (25) and (26) to Equations (13) and (14), the

diffracted magnetic field and the non-uniform current may be expresed in

closed form as,

S

& A -iBep
R‘T Hz’d=-2H°AK_(AxA)e ,0<pA<¢,0<¢1.(1t (28)
- A -Boy -

o and Unu =-2H AK_(Ax,)e thr 0< pp <= 0c g, < (29)
.*Q."'_

~ Again, we can readily verify that our closed form expressions agree with the

2
3’;; eigenfunction solution and the asymptotic theory of diffraction at the edge
[ o
}_f-: and far from the edge.
o

Since Keller's theory has been used to obtain Equations (21) and (29),

~: they are valid only when neither Face A nor Face B is close to Geometrical
n\'_'l
‘}‘?.;f optic boundaries. - For instance, when ¢; ~ (n=1)r, Face B is in the vicinity
ph i

I of a shadow boundary and Equation 16 is not applicable, and neither is
f: Equation (21). Such cases, where either or both of the wedge faces are in the
M
LAY
5
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N proximity of a GO boundary are dealt with in Section 2.4. Next, we corsider
XN

: the case when both faces are illuminated.

3

&

A

b 2.3 Both Faces Illuminated

-
) nn

We now consider the angles of incidence in the range (n-1)n < ?; < e

% : In this range, both faces are illuminated. The current on Face A is still
e
:5 given by Equation (29). However, the current on Face B now consists of both
)
uniform and non-uniform components.
;'
;ﬁ Current on Face B: As before, the diffracted magnetic field at and far from
the edge is given by,
.k HB a-2H (1-v) Bpg = 0 (30)
< z,d 0 8
(‘ 1 -ijB .
" ~ 2H°vF —_— Bog >> 1 (31)
(TrTeeg
b2 where,
sinvw .
Fg = Tosor + cosve, (32)

R

\
?; Note that FB is negative for (n-1l)w < ¢; < nm. Clearly, Equations (30) to

0

" (32) are similar to Equations (22) to (24) and the closed form expressions for
o the field and the current are,

e ,
b \ B -JBDB nm

. Hz,d = - 2 Ho B K_(8B xB) e y 0¢ pg < = (n=1)r < 4; ¢ = (33)
o

% .

- 8 . -JBDB 2 . nw

& and Jnu 2 H, BK_(Bxg)e tgr 0 < pg < =5 (n=1)m < ¢, < = (34)
Y

S

o where,
:~:

34

_ 12

Y
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B =2 (1 -v) (35)

)

Now, it only remains to consider the cases where either or both of the faces
Ry
e are in a transition region associated with GO boundaries.
?
3
g .

2.4 Transition Region Currents
L)
. R Face B of the wedge is in a transition region in the following two cases:
W
o
_ a) when ¢; 1s close to but less than (n-1)m, a shadow boundary is close
iée to Face B, and
a5
CEL: b) when 9y is close to but greater than (n-1l)r, a reflection boundary is

close to Face B.

IR In a similar fashion, Face A of the wedge is close to a GO boundary

when 95 is close to n. Both faces of the wedge may be close to GO boundaries;

:;:I this condition occurs when n 1is <close to two. Then (n-l)x ~ =,
'.:n"
k; Hence, ¢, ~ (n=1)x imples 9; ~ T

A1l these cases are considered in this section. The procedure used is

-7 essentialy the same as before. The only difference is that the diffracted
1250
Ry

:3 . field far from the edge is obtained using Pathak and Kouyonmjian's uniform
v

theory of diffraction [5].

TR~
150)
NN
% Current on Face B: The angles of incidence of interest are in the vicinity
oL

of (n-1)r, Let,
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9, = (n=1)r £ 6 (36)

K where & is a small positive quantity. The positive sign in Equation (36)
b corresponds to the case of Face B being illuminated with a reflection boundary
{

being close by. The negative sign corresponds to the case when Face B is in

the shadow region with a shadow boundary being close by. From UTD, the

: diffracted magnetic field far from the edge is given by,
| H -JjBp
) B 0 -t + - B

H ~e———— [ Tan y"F(x") + Tan y F(x7)] e Bp, > 1 (37)
.I Z,d ny ZWJBQB B
, where, the transition function F(x) is given by [5],
?
: o -it?
. F(x) =2j | /X | e ] e™v" dt

| /X |
: =2 /7R k(| /TN (38)
and

. t . Te,
I\ v 2n
a (39)
. : nt i ¢
K xt = 28pg cosz(——qz—l)
L)
} The small and large argument approximations of the transition function are
! given by,

F(x) ~/ njx = 2 jx x+0

and F(x) ~ 1 X + @
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AN
" The second term in the square barckets of Equation (37) is noteworthy. For
"pﬁ
. .@ small '§’,
2%
o )

d $ |

Tan q;" = Tan (mr 1 ~F = (41)

s —Zn 3

it

Y

1\..': - 52

o and x ~ Bdpg =¥ (42)
2h )

“"-_1'_: Thus x~ is small and using the small argument approximation of F(x~),

i

- Tany* F(x") ~3 [ n/ 2njgog - § 20 Bogs ] (43)
22

E Unlike x~, for Beg large, x* remains large and F(x*) may be approximated by
' unity and the diffracted field may be written as,
&'y
&2 ,
...c: Hz,d ~ Uy tu, BpB » 1 (44)
.:’

where,

N - -jBe .

"'-,j u; = Ho tan: l__ e 8 Bog 2> 1 (45)
(:J ZWJBDB

et

P .
) (‘“b BD ‘Jdp

T and u, = sgn [tanv"] 2 Ho { %- /;/ 7-3- §} e B, Bog > 1 (46)
%

*_'_n

I.j-: Keeping Equation (41) in mind, Equation (46) may be rewritten as,

tres

, — / Bp -j8p

A + 1 B + B

o up = sgn [coty' ] 2 H (% - /-ﬂ- ——2n | coty’| } e » Bog > 1 (47)
o

i)




At the edge, as before,

B

2.4 0 if Face B is illuminated. (48)

H = 2v HO -2 HO at p

= 2v H at p = 0 if Face B is shadowed. (49)
Comparing the expression in curly brackets of Equation (47) with
Equation (11), it is easily recognized to be 2 H, son (cotw+)

K_( / BpB/Z 2n | cot v | 1 for Beg >> 1 . For pg = 0, i.e. at the edge,
this function has a value of sgn (cotw+) H.. Keeping this in mind, the

0
diffracted field at the edge may be rewritten as,

B =
Hz,d Uy U, at p =0 (50)
where,
u; = (2v - 1) H° at p =0 (51)
and u, = sgn (cotw*) Ho at p = 0 (52)

Now, Equations (51) and (45) may be combined together as in the preceding

sections to yield,

- 'jSDB
u; = 2 Ho B x_[B xB] e 0<pg<e (53)
where,
8= (2v-1)
(54)

LT .
and xg =V = 2n coty
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Equations (52) and (47) yield, as already determined,

+ . I8
= 2 Ho sgn(cot v ) K_(xB) e (55)

Uz

where

Bo
/ Beg
xg =/ —=2n | cot y" | (56)

The current on Face B is now obtained to be,

-JjBeg
Jng = -2 Ho [8 K_(Bxg) + sgn(cotw*) K_(x;)] e °8 ta
(57)

0« pg € =

The analysis for current on Face A with ¢; ~ ¥ remains essentially the

same. We give, without details,

A - - -JBppy
Jou = 2 M, [ AKX (Ayg) - son(tany”) 0_(yz) Je o ta
(58)
0« Pp S
where,
A = (2v - 1)
(59)

8o
// A 2n | tanyt |
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¥ We will now obtain a quantitative criterion as to when '&' may »oe
considered small and, hence, use the expressions for transition region

currents. Equation (41) is obtained by replacing the tangent function by its

‘7,
: ; small argument approximation. Such an approximation may be taken to be valid
3

¥ for angles less than r/20. Hence,
s

2".{. § < T

5 Zn a0

-

N and § < %% (60)
2l

K \.._‘
e Note that the "width" of the transition region depends upon the wedge angle.
‘?} Equation (57) is valid when (n-1)n - %ﬁ < 9y¢ (n=1)n + %% and Equation (58) is
- valid when n - %% <9y sm +-%%. For all other angles of incidence,
7 expressions derived in Sections 2.2 and 2.3 apply.

¥

,;— 2.5 SPECIAL CASES

- In the case of an infinite plane (n = 1) and a half plane (n = 2), exact
K. solutions for induced currents are available in the literature [19]. We now
.Ji

Ve show the expressions derived in this paper reduce to these exact solutions.

4

> _.,.'

a. Infinite Plane: In the case of an infinite plane, both faces are always

;? illuminated and Equations (29) and (34) are applicable. Clearly, both these .‘
¥ non-uniform currents reduce to zero as they should. The total current on the
O infinite plane is simply the uniform current.

"

E A more interesting case is when 9; is zero and n is close to but slightly
;; greater than unity. Then, Face B is in the shadow region ana is close to a
N shadow boundary. Hence, Equation (57) is applicable. As n approaches unity,
S

2

=

G

18
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o the wedge approaches an infinite plane and the shadow-side current must
=
A approach the uniform current. From Equations (54) and (56), 8 + 1, xg + 0
e - -

';:‘-‘j and tg » -ty asn ~ 1. Therefore, Equation (57) simplifies to
o
L -JBp
8 B ¢

ol Jpg = 21, @ th as n+ 1 (61)
"0' "

lv
b
3‘:‘.: This is simply the PO current and we obtain the exact solution. The non-
| uniform current on Face A, given by Equation (29) becomes zero, and the total
f}é‘j_— current is simply the uniform current.
;4 b. Half-Plane: The total non-uniform current on Face A is a sum of the non-
'; uniform currents on Face A and Face B given by Equations (21) and (29).
| Noting that, for this case, EB = EA’
XN : ]
';‘:-: a . -ijA -
3) . 2 Ho [2vs K_(BxB) + A K_(AxA) Je tppn =2 (62)
i

For n = 2, Equations (19) and (27) reduce to,

e B=1=A
§':’A
-v‘.'t ¢1
o xa =7 20 | cos — | = xg
’&‘ .
1’:;:;

1

and Pp = Pg * P

/3:"
~]
;;f‘f Using the definition of the modified Fresnel function (Equation 9),
o
/= Jee (2 cos2 b -1) = .2
o jn .40 /1e K / et gt ¢ (63)
- u 0 b ] /._ ¢i A
i\:.- 28p | cos - |




Noting that the uniform current on the half plane is given by,

jBp €OS¢. .
J =2H_ e ! tA

Equation (63) becomes,

: ® ., 2
3,°-29, /4 / eIt at (64)
$.
v 280 | cosq}[

This is exactly the expression obtained by James [19] for what he calls the

correction current.

20
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3. NUMERICAL ILLUSTRATIONS

The currents induced on a wedge are computed using the expressions
derived in this paper. These results are compared to the exact currents
obtained using the eigenfunction solution to test their accuracy.

We consider three separate wedge angles corresponding to

a =1/12, n/2, and 2r/3. The case a = n/12 is chosen because for this case
both the faces of the wedge could be in transition regions associated with GO
boundaries. The cases a = n/2 and 2v/3 are chosen because Shretter and
Bolle's [17] curves correspond to these wedge angles. For each wedge angle,
computations have been carried out for a range of angles of incidence.

We follow a uniform notation for presenting our results. The exact
currents obtained from the eigenfunction solution are denoted By a dashed line
(Face A) or solid line (Face B). Currents computed using the expressions
derived in this paper are denoted by symbols only, triangles { A & A A )

for transition region currents and crosses (x x x) otherwise.

[1lustration 1: a = 159

We consider four angles of incidence, 95 = 0°, 135°, 166° and 172.5°.
The first two angles of incidence correspond to only Face A being illuminated
and the last two correspond to the case where both faces are illuminated.

Figure 2 shows the currents for the case of ¢; = 00. Note that neither
of the‘ faces is in the vicinity of a GO boundary. Figure 3 corresponds
to ¢; = 1359, Note that a shadow boundary is now in the vicinity of Face B,
but Face A is not affected by any GO boundary. Figure 4 shows the currents
for ¢y = 1660, For this case, both the faces are affected by a reflection
boundary. Figure 5 corresponds to 9; * 172.59 and in this case both faces are

visible., Furthermore, from symmetry the magnitude of current on Ddoth the

21
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faces is the same. In Figure 6, we present the phases of non-uniform current
when ¢ = 1669, For the sake of conserving space, we present only one pnase
plot but note that the agreement shown here is typical. In all of tnese

cases, agreement between our expressions and the exact results is excellent,

I1lustration 2: « = 900

We consider four angles of incidence corresponding to
¢; = 09, 22.59, 90.01° and 1359. Note that Schretter and Bolle [17] nave
presented curves corresponding to ¢, = 00 and 22.59,

Figure 7 and 8 show the currents corresponding to the case ¢ = Qo
and 22.59, Only Face A is illuminated for these cases and currents on neither
face is affected by GO boundaries. Figure 9 corresponds to the case
of 9 = 90.019 . In this case, the reflection boundary is very close to Face
B. Figure 10 corresponds to the case of $; = 1389 .,  In view of symmetry,
currents on both faces are identical. In Figure 11, we show the phases of
total currents on both the faces and note that the degree of agreement shown
is typical. It may be pointed out that the agreement between our results anag
the exact results remains good but not as good as the agreement was for the

case of ¢; = 159,

I1lustration 3: a = 1200

This case has been discussed by Schretter and Bolle [17] and we consider
the same angles of incidence, viz., ¢; = 159, 900 and 1200 . In addition, we
also consider the case for ¢, = 550, to illustrate the behavior of the
transition region currents.

Figures 12 and 13 correspond to the cases ¢, = 159 and 55% and in these

cases only Face A is illuminated. In the latter case, a shadow boundary 1s

26
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Closed Form Solution

X X X X
A AAA

;A__A-A.A'A“LJ‘_BA\-,X- ‘\.L_. -

Closed form solution for

glancing angles of incidence.
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angles of incidence are such that both faces are illuminated and further, in
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the latter case, the currents on both faces are identical.
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4. DISCUSSION AND CONCLUDING REMARKS

In this paper we present closed form expressions for non-uniform currents
on a perfectly conducting wedge illuminated by a TE-plane wave. These
expressions are valid for all wedge angles and any given angle of incidence,
but are not uniform. The expressions derived in this paper invalve the simple
and well-known modified Fresnel functions. These expressions are such that
far from the edge, they agree with the asymptotic theory of diffraction and at
the edge, they agree with the eigenfunction solution. Furthermore, as
demonstrated by numerical illustrations, for intermediate distances from the
edge, our expressions agree quite well with the exact solution. Exact closed
form solutions are available in the literature for the cases of a half plane
and an infinite plane. Our solution reduces to these exact expressions for
those special cases.

It is often suggested that the non-uniform currents are significant only
in the immediate vicinity of the edge [17]. This is true only when the wedge
faces are not in the vicinity of a GO boundary. As demonstrated by the
iilustrations in the preceding section (Figures 4, 9 and 13, for instance),
transition region currents remain significant far from the edge.

.There are several advantages in having closed form expressions for non-
uniform currents. As pointed out by Schretter and Bolle [17], it becomes
possible to take the Fourier transform of the current and, consequently,
simplifies problems involving pulse scattering from edged bodies. Recently,
these expressions have been incorporated into an iterative scheme for salving
the magnetic field integral equation with a considerable success [22]. It is

also possible to use these expressions to obtain the fields in a caustic

regton as an integral of surface currents, similar to the technique of MEC,
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It would be interesting to obtain expressions for currents that are
uniformly valid. Also, the case of excitation of a wedge by a ™ plane wave

needs to be considered, These problems are presently under investigation and

the results would be communicated in due course.
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